
Development Kit
Guideline

Revision 1.01 Page 1/26



Index

Event Server – An IoT Platform......................................................................................... 3

Event Server Environment..................................................................................................4

Event Server – Test Environment Deploy..........................................................................4

AD/LDAP LDS instance......................................................................................................5
1. Install Server roles AD and ADLDS in Windows Server................................................5
2. Disable Password Complexity for new users...............................................................5
3. Installation of a LDS Instance.......................................................................................5
4. LDS Instance deploy Scripts..........................................................................................9
5. AD/LDAP Credentials.....................................................................................................9

Event Server......................................................................................................................10
1. ES and Dependencies installation...............................................................................10
2. ES initial Setup and service start.................................................................................12

ES license (250 objects)...................................................................................................13

ES Virtual Sensors Emulator............................................................................................14
1. Objective.......................................................................................................................14
2. Pre requisites................................................................................................................14
3. Installation....................................................................................................................14
4. How to use Virtual Sensors Emulator..........................................................................15

Scripts and policies..........................................................................................................16
1. Policies inside LDS instance........................................................................................16
2. Scripts inside LDS instance.........................................................................................17
3. Scripts Examples:.........................................................................................................18
3.1. Lux sensor Turn ON or OFF a actuator.....................................................................18
3.2. Presence sensor turn ON or OFF a actuator............................................................19
3.3. Temperature sensor turn ON or OFF a actuator......................................................20
4. Objects association inside of LDS Instance...............................................................21
5. Real life example script (Turn ON Air Conditioner).....................................................22

API`s..................................................................................................................................23

AIGSG IoT Gateway (Powered by Intel®)........................................................................24
1. Flash Gateway using AIGSG Image.............................................................................24
2. AIGSG Gateway basic info...........................................................................................25
2.1. IP Address..................................................................................................................25
2.2. Credentials.................................................................................................................25
3. Setup Gateway to connect to Central ES....................................................................26

Revision 1.01 Page 2/26



Event Server - An IoT Platform 

The Event Server is the core component of the AIGSG’s IoT Platform. This database 
software is the platform’s key element that takes care of the big amount of data 
(events) generated in the real world by the things, that is, doors, access devices, RFID 
tags and readers, any type of sensors and anything than can be digitally connected to
a private network, VPN or the so called internet cloud. 

The Platform is comprised of three central elements: an group of peripheral devices, 
gateways and the Event Server. As mentioned, the peripheral devices and sensors 
generate (receive) data from (to) the real world or process; this data flow is taken by 
the gateways, which are the interface to the network, VPN or Internet cloud that are 
just the means to reach out our platform fnal component: the Event Server. In any 
house, building, place, city and corporation generates millions of small pieces of 
information with a low value itself, but operators using regular software cannot 
handle this amount of events. 

The Event Server organizes and processes automatically all events coming from the 
physical world, translated into the virtual world, following a specifc and previously 
defned logic. In order to implement this logic, the Event Server is provided with a 
script engine module that allows the Administrator or programmer to establish 
cause-effect relations between incoming events (inputs) and outgoing events 
(outputs) from/ to the physical world. For instance, if a biometric reader registers a 
valid data (input), the access is granted (logic) for that person by opening the 
associated door (output). 

Since the physical world is organized by itself in a hierarchical structure, that is, 
things (objects, assets) belong to specifc places (facilities, buildings, corporations, 
etc), and also people are related to specifc things and places, in one way or another. 
This situation is reflected in the Event Server through LDAP authentication. The ES 
works along with LDAP technology and software, such as, Active Directory, Open 
LDAP and others. Sensors, devices, gateways, locations, users, even scripts are 
objects that must be created and assigned to a hierarchical LDAP tree to exist in the 
ES. 

In order to get beneft of the registered events allocated in the database, the Event 
Server is provided with an API interface, which enables data connection to Third 
Parties (Distribution Channels, Partners, re-sellers, etc) application software. These 
applications are the interface to the fnal users and operators (smartphones, tablets, 
operator stations, client PCs, and others). 

Revision 1.01 Page 3/26



Event Server Environment

The Event Server Environment is comprised by 2 core elements:
– AD/LDAP LDS Instance
– Event Server

The AD/LDAP LDS Instance is responsible for all objects inside the IoT environment, 
like:

– Gateways
– Sensors
– Actuators
– People (Users)
– Locations (Places)
– Policies
– Scripts

The Event Server retrieves all the objects information from AD/LDAP LDS Instance 
and distribute them among the ES Nodes available in your IoT System.

Event Server – Test Environment Deploy

Let`s start the deployment of Event Server – Test Environment.
The image below show the installation order of this structure.

Revision 1.01 Page 4/26



AD/LDAP LDS Instance

In order to install the LDS instance, execute the following steps:

1. Install Server roles AD and ADLDS in Windows Server.

2. Disable Password Complexity for new users

Open Group Policy Management Console (Start / Run / GPMC.MSC), open the 
Domain, and right-click and Edit the "Default Domain Policy". Then dig into the 
"Computer Confguration", "Windows Settings", "Security Settings", "Account Policies",
and modify the password complexity requirements setting.

3. Installation of a LDS Instance

3.1. Execute “Active Directory Lightweight Directory Services Setup Wizard”

3.2. Follow the instructions below to create a new LDS instance.

3.3. Select “A unique instance”.

Revision 1.01 Page 5/26



3.4. Create a name for the new LDS instance (This name is arbitrary).

3.5. Defne the ports of the LDS instance.

3.6. Select “Yes, create and application directory partition” and create a partition 
using “dc=aigsg,dc=com”.

Revision 1.01 Page 6/26



3.7. Select the path to store fles associated with AD LDS.

3.8. Select the Service account to perform operations in LDS instance.

3.9. Select the AD LDS Administrator user for the LDS Instance.

Revision 1.01 Page 7/26



3.10. In “Importing LDIF Files”, select “MS-InetOrgPerson.LDF” and “MS-User.LDF”.

3.11. Confrm the information to create a new LDS Instance.

3.12. Wait until the end of creation of the new LDS instance.

Revision 1.01 Page 8/26



4. LDS Instance deploy Scripts

 

4.1. Copy fles from “ldap” folder to the AD/LDAP Server 

4.2. Execute the “Command Prompt” as “Administrator” 

4.3. In the CMD, access the folder “ldap” inside the computer 

4.4. Change the “schema.bat” fle and put the correct server information 

<port> put LDAP Port Number. 

<user> put a Username authorized to perform operations in LDS instance 

<domain> put the domain of the username to perform operations in LDS instance 

<password> put the password of the username to perform operations in LDS instance

E.g: set CONN=-s localhost:50004 -b Administrator AIGSG password 

4.5. Execute the “schema.bat” fle 

4.6. Change the “data.bat” fle and put the correct server information 

<port> put LDAP Port Number. 

<user> put a Username authorized to perform operations in LDS instance 

<domain> put the domain of the username to perform operations in LDS instance 

<password> put the password of the username to perform operations in LDS instance

E.g: set CONN=-s localhost:50004 -b Administrator AIGSG password 

4.7. Execute the “data.bat” fle

5. AD/LDAP Credentials 

After the execution of “schema.bat” and “data.bat”, a new user will be available to 
change settings in LDS Instance and to login in Monitoring Center. Here are the 
credentials of this new user: 

Username: administratoruser Password: passw0rd

Revision 1.01 Page 9/26



Event Server 

1. ES and Dependencies installation:

1.1. Install clean Ubuntu (15.04 “Vivid Vervet” 64 bits) with no additional packages 
chosen during installation (no Java, no database server, etc). Locale and language are
all USA/English. Do not setup initial user as “eventsrv” – this one will be created later 
by .deb installer. 

1.2. Install ES: 

# sudo dpkg -i eventsrv-1.0.1-0.deb 

(at this point dpkg complaints about missing dependencies – ignore this message) 

1.3. Run following command to force ES installation with its dependencies: 

# sudo apt-get install -f 

1.4. Confgure 'ES' database: 

First, connect under an administrator user (which has CREATEDB and CREATEUSER 
privileges) and create new user and database which will be used by the Event Server. 
For that, run: 

# sudo -u postgres psql -f init.sql 

Next, connect under "eventsrv" user and initialize database schema, for that run: 

# psql -h localhost -U eventsrv -f schema.sql 

When you`re asked by a password in this step, use eventsrv

Revision 1.01 Page 10/26



1.5. Install rabbitmq-server package:

# sudo apt-get install rabbitmq-server 

1.6. Confgure RabbitMQ. Rabbitmqctl commands should be run under “rabbitmq” 
user: 

# sudo -u rabbitmq rabbitmqctl add_user eventsrv eventsrv 

This command creates AMQP user for the Event Server; 

# sudo -u rabbitmq rabbitmqctl add_vhost eventsrv

This command creates AMQP virtual host; 

# sudo -u rabbitmq rabbitmqctl set_permissions -p eventsrv eventsrv ".*" ".*" ".*"

This command grants full access messaging permissions to previously created user 
within the virtual host. 

Revision 1.01 Page 11/26



2. ES initial Setup and service start

2.1. Rename eventsrv-sample.conf to eventsrv.conf (and update with correct 
settings).
Here is the content of the eventsrv.conf: 

# Database settings 
Database:
# Host name or address of the database server 
Host: localhost 
# Database name 
Name: eventsrv 
# Database user credentials 
User: eventsrv 
Password: eventsrv 

# LDAP settings 
Ldap: 
# Host name or address of the LDAP server 
Host: <IP Address of AD/LDAP Server>
# Port number of the LDAP server 
Port: 389 
# Root node of the organization structure 
Root: ou=Organization,dc=aigsg,dc=com 
# LDAP user credentials 
User: admin@aigsg.com 
Password: passw0rd 

# AMQP settings 
Amqp: 
# Host name or address of the AMQP server Server
Host: localhost 
# Virtual host name 
VirtualHost: eventsrv 
# AMQP user credentials 
User: eventsrv 
Password: eventsrv 

# Primary settings 
Primary: 
# Path to installation directory 
BaseDirectory: /var/lib/eventsrv 
# Network address of this host 
HostAddress: <IP Address of ES>

2.2 Run the server 

# sudo service eventsrv start 

Revision 1.01 Page 12/26



ES license (250 objects)

To activate a license for 250 objects, follow the procedure below:

Copy the ES license fles (250sensors.license) to:
/var/lib/eventsrv

then, go to folder /var/lib/eventsrv and run:
sudo chmod 777 250sensors.license

Revision 1.01 Page 13/26



ES Virtual Sensors Emulator

1. Objective: 

Virtual Sensor Emulator is a tool developed for test ES.

2. Pre requisites: 

Computer with Ubuntu 15.04 64 bits installed. 

3. Installation 

3.1. Decompress the fle “es-virtual-sensors-1.0.4.tar.gz” 

3.2. Execute the following commands in order to update your Ubuntu installation:

# sudo apt-get update 

# sudo apt-get upgrade 

3.3. Install the dependencies:

# sudo apt-get install libprotobuf-dev libboost-all-dev 

3.4. Install QT opensource version 5.5

http://download.qt.io/archive/qt/5.5/5.5.0/qt-opensource-linux-x86-5.5.0.run

3.5. After install the updates and dependencies, run the script inside the 
decompressed folder “es- virtual-sensors”: 

# ./run.sh 

Revision 1.01 Page 14/26



4. How to use Virtual Sensors Emulator 

Check the image below to verify a basic usage of Virtual Sensors Emulator: 

1. Enter the correct IP and Port of the ES; 

2. Enter the Gateway Serial Number (Same defned in AD/LDAP instance); 

3. Add Sensors and Actuators (Keep in mind to use the same Serial numbers [ID] 
defned in AD/LDAP instance; 

4. Start the emulator; 

Revision 1.01 Page 15/26



Scripts and Policies

Event Server use Scripts and Policies inside LDS Instance in order to “automatize” 
and give permissions in the IoT environment.

Policies are in charge of the permissions inside LDS instance.

Scripts are in charge to give “Inteligence” and automation skills to the IoT 
environment.

1. Policies inside LDS instance

The policies inside the LDS instance allow the interaction between Scripts and 
Sensors. 

Policy inside LDS instance

The main attributes of a policy object are:

AigsgPolicyAllowEvent – attribute that allow the script to interact with sensor events.

AigsgPolicyAllowObject – attribute that allow the script to interact with sensor.

AigsgPolicyScript – attribute that associates the policy with a script.

Revision 1.01 Page 16/26



2. Scripts inside LDS instance

The scripts inside LDS instance bring automation and inteligence to the IoT 
environment.
Using scripts, you automatize the system, creating rules of interaction between 
objects in LDS instance.

Script inside LDS instance

The main attributes of a script object are:

AigsgScriptSource – attribute responsible to receive the LUA script that will 
automatize the IoT environment.

Revision 1.01 Page 17/26



3. LUA script examples

ES uses LUA scripts inside LDS instance to automatize the IoT Enviroment.

Here are some script examples:

3.1. Lux sensor Turn ON or OFF a actuator

sens = sensor.get()
if (sens == nil) then

return
end
value = sensor.get_value()
relay = object.get("path in LDAP to actuator.Relay")

ctx = script.context()

if (value =< 200.0) and (ctx.state == nil or ctx.state == false) then
sensor.set_value(relay, false)
ctx.state = true
event.send(\{class = "test.ScriptEvent", msg = "Main lights turned OFF, turning 

ON security lights"\})
elseif (value > 200.0) and (ctx.state == nil or ctx.state == true)  then

sensor.set_value(relay, true)
ctx.state = false
event.send(\{class = "test.ScriptEvent", msg = "Main lights ON, turning OFF 

security lights"\})
end}

In the script above, ES will receive values from a sensor, and if the values are equal or 
below 200.0, the actuator will be turned off. If the values received from the sensor are 
greater that 200.0, the actuator will be turned on.

This script is designed to receive values from a Lux Sensor and control a actuator in 
charge of Lights in a room.

Revision 1.01 Page 18/26



3.2. Presence sensor turn ON or OFF a alarm actuator

sens = sensor.get()
if(sens == nil) then

return
end

value = sensor.get_value()
relay = object.get("path in LDAP to actuator.Relay")

ctx = script.context()

if(value == true) then
sensor.set_value(relay, true)
ctx.state = true
event.send({class = "test.ScriptEvent", msg = "Activate alarm"})

elseif(value == false) then
sensor.set_value(relay, false)
ctx.state = false
event.send({class = "test.ScriptEvent", msg = "Deactivate alarm"})

end

In the script above, ES will receive values from a sensor, and if the values are equal 1, 
the actuator will be turned on. If the values received from the sensor are equal 0, the 
actuator will be turned off.

This script is designed to receive values from a Presence Sensor and control a 
actuator in charge of Alarm.

Revision 1.01 Page 19/26



3.3. Temperature sensor turn ON or OFF a actuator

sens = sensor.get()
if (sens == nil) then

return
end

value = sensor.get_value()
relay = object.get("path in LDAP to actuator.Relay")

ctx = script.context()

if (value >= 30.0) and (ctx.state == nil or ctx.state == false) then
sensor.set_value(relay, false)
ctx.state = true
event.send({class = "test.ScriptEvent", msg = "High temperature! Turning FAN 

ON"})

elseif (value <= 29.9) and (ctx.state == nil or ctx.state == true) then
sensor.set_value(relay, true)
ctx.state = false
event.send({class = "test.ScriptEvent", msg = "Cooled down. Turning FAN OFF"})

end

In the script above, ES will receive values from a sensor, and if the values are equal or 
greater than 30, the actuator will be turned on. If the values received from the sensor 
are equal or below 29.9, the actuator will be turned off.

This script is designed to receive values from a Temperature Sensor and control a 
actuator in charge of a Air Conditioner or a FAN.

Revision 1.01 Page 20/26



4. Objects association inside of LDS Instance

Here is a clear example of how the policies and scripts are associated inside the LDS 
Instance:

Bank sample structure in LDS Instance 

In order to make the associations between objects in LDS Instance you must know 
that:

– A sensor point to a policy using the attribute AigsgObjectPolicy;
– A policy point to a script using the attribute AigsgPolicyScript;

Based on this, they relate as follow:

SENSOR > POLICY > SCRIPT

You can see that they relate in a one-way relation. 

Sensor links to a policy, that calls a script, checking sensor values, and acting in case 
that it flls his needs.

Revision 1.01 Page 21/26



5. Real life example script (Turn ON Air Conditioner)

Let`s imagine the following scenario:
A room with:

– Temperature Sensor

– Air Conditioner Actuator

In this scenario, the following script can be used:

### Temperature Sensor activates Air Conditioner ###
sens = sensor.get()
if (sens == nil) then

return
end

value = sensor.get_value()
relay = object.get("path in LDAP to actuator.Relay")

ctx = script.context()

if (value >= 27.0) and (ctx.state == nil or ctx.state == false) then
sensor.set_value(relay, false)
ctx.state = true
event.send({class = "test.ScriptEvent", msg = "High temperature! Turning FAN 

ON"})

elseif (value <= 26.9) and (ctx.state == nil or ctx.state == true) then
sensor.set_value(relay, true)
ctx.state = false
event.send({class = "test.ScriptEvent", msg = "Cooled down. Turning FAN OFF"})

end

Using this script in this scenario, we will have the 2 following situations:

1. When the Temperature inside the room is below 27 degrees Celsius, the Air 
Conditioner will be\turn OFF.

2. When the Temperature inside the room is higher than 27 degrees Celsius, the Air
Conditioner will be\turn ON.

Revision 1.01 Page 22/26



API (APPLICATION PROGRAMMING INTERFACE)

Event Server is provided with a series of API`s to use with it.

Here are the list of API`s:

libmclient is a communication library with ES server 
(https://github.com/AIGSG/libmclient)

es-proto - google protobuff description of the messages between es server and 
clients, all messages that can be send to es server are defned there 
(https://github.com/AIGSG/es-proto)

Python binding for libmclient 
(https://github.com/AIGSG/es-tools/tree/master/pylibm)

Tools developed using ES (https://github.com/AIGSG/es-tools)

libes is a C++ wrapper around libmclient and es-proto user api part 
(https://github.com/AIGSG/libes  )  
 
libdevapi - Designed to hide libmclient + es_proto + devapi interface and wrap 
everything as C++ (https://github.com/AIGSG/libdevapi  )  

Revision 1.01 Page 23/26

https://github.com/AIGSG/libmclient
https://github.com/AIGSG/libdevapi
https://github.com/AIGSG/libes
https://github.com/AIGSG/es-tools
https://github.com/AIGSG/es-tools/tree/master/pylibm
https://github.com/AIGSG/es-proto


AIGSG IoT Gateway (Powered by Intel® Edison)

AIGSG developed a IoT Gateway that is powered by Intel Edison processor.

AIGSG IoT Gateway
1. Flash Gateway using AIGSG Image

Windows
http://www.intel.com/content/www/us/en/support/boards-and-kits/000005795.html

Linux
http://www.intel.com/content/www/us/en/support/boards-and-kits/000005990.html

MAC OS X
http://www.intel.com/content/www/us/en/support/boards-and-kits/000005801.html

Follow the instructions detailed in Intel website, but use AIGSG Gateway Image 
instead of the image available in Intel website.

AIGSG Gateway Image has flashall.sh and flashall.bat.  
flashall.sh – MAC OS X and Linux | flashall.bat – Windows

Revision 1.01 Page 24/26

http://www.intel.com/content/www/us/en/support/boards-and-kits/000005801.html
http://www.intel.com/content/www/us/en/support/boards-and-kits/000005990.html
http://www.intel.com/content/www/us/en/support/boards-and-kits/000005795.html


2. AIGSG Gateway basic info

Here are the access information of AIGSG Gateway:

2.1. IP Address:
Default usb0 IP address (USB-device through uUSB connector): 192.168.253.254

Default eth0 IP address (gateway_v1 or gateway_v2 motherboard): 192.168.254.254

2.2. Credentials
Username: root
Password: Aigsg2015Gateway

Image already comes with OpenVPN preinstalled. Confguring eth0 or wlan0 in 
/etc/network/interfaces to allow Internet access will cause Gateway to automatically 
connect to AIGSG VPN.

Image also already includes sensordaemon preconfgured with ES Server 10.20.20.16.
Communicators can be connected either through USB Master or directly to Gateway 
through integrated communicator connector (/dev/ttyUSB0 /dev/ttyUSB1 
/dev/ttyMFD1 are preconfgured).

Sensordaemon logs and confguration are located in 
/opt/sensordaemon/sensordaemon.

After connecting communicators, one can check /tmp/sd__dev_ttyXXXX fles which 
should contain dump of detected communicators with connection type, hardware IDs,
bus/radio addresses, serials and sensor/actuator types.

FIXME: sensordaemon needs to be restarted after changing sensors in Active 
Directory.

Revision 1.01 Page 25/26



3. Setup Gateway to connect to Central ES

After flashing the Gateway, go to /var/lib/eventsrv folder and change eventsrv.conf 
fle.
# Sample confguration fle

# Database settings
Database:
  # Host name or address of the database server
  Host: localhost
  # Database name
  Name: eventsrv
  # Database user credentials
  User: eventsrv
  Password: eventsrv

# AMQP settings
Amqp:
  # Host name or address of the AMQP server
  ServerHost: <ES Primary Server IP>
  # Virtual host name
  VirtualHost: eventsrv
  # AMQP user credentials
  User: eventsrv
  Password: eventsrv

# Primary settings
Primary:
  # Path to installation directory
  BaseDirectory: /var/lib/eventsrv
  # Network address of this host
  HostAddress: <ES Primary Server IP>
  # Device serial number (device-local confguration only)
  SerialNumber: <Serial Number>

In Gateway confguration there`s no need to have LDAP confguration block. Only 
Primary Event Server connects to LDS Instance to retrieve objects.

Gateways only have access to it`s own structure inside LDS instance (Gateway object
, Sensors, Actuators, Policies and Scripts inside of it.)

Revision 1.01 Page 26/26


