O This repository Search Pull requests Issues Gist

AIGSG / es Private

Code Issues 0 Pull requests 0 EE Wiki Pulse Graphs

Lua

Sergey Polyakov edited this page on Jul 13, 2015 - 3 revisions

Utility functions

util.dump(value)

Prints contents of the value to debugging console.

Date/time library

Date/time table structure:

date_time = {
year = 2014, —— Year number
month = 12, —- Month of the year (1 is January)
day = 31, —— Day of the month (from 1 to 31)
hour = 23, —— Hour of the day (from @ to 23)
min = 59, —— Minute of the hour (from @ to 59)
sec = 59, —— Second of the minute (from @ to 59)
msec = 999 —- Millisecond of the second (from @ to 999)

Note that all timestamps returned by the library functions are in UTC time zone.

date_time.now()

® Unwatch~ 10 Y Star O YFork O

Settings

Edit

¥ Pages
Home
eventsrv.conf
Lua

TODO

Add a custom sidebar

Clone this wiki locally

https://github.com/AIGSG, [

& Clone in Desktop

https://github.com/orgs/AIGSG/dashboard
https://github.com/pulls
https://github.com/issues
https://gist.github.com/
https://github.com/AIGSG/es/wiki/Lua/_history
https://github.com/notifications
https://github.com/new
https://github.com/ejcmdq
https://github.com/AIGSG
https://github.com/AIGSG/es
https://github.com/AIGSG/es
https://github.com/AIGSG/es/issues
https://github.com/AIGSG/es/pulls
https://github.com/AIGSG/es/wiki
https://github.com/AIGSG/es/pulse
https://github.com/AIGSG/es/graphs
https://github.com/AIGSG/es/settings
https://github.com/AIGSG/es/wiki/Lua/_edit
https://github.com/AIGSG/es/wiki/_new
https://github.com/AIGSG/es/wiki
https://github.com/AIGSG/es/wiki/eventsrv.conf
https://github.com/AIGSG/es/wiki/Lua
https://github.com/AIGSG/es/wiki/TODO
https://github.com/AIGSG/es/wiki/_new?wiki%5Bname%5D=_Sidebar
github-mac://openRepo/https://github.com/AIGSG/es.wiki
https://github.com/AIGSG/es/stargazers
https://github.com/AIGSG/es/network
https://github.com/AIGSG/es/watchers
https://github.com/AIGSG/es/subscription

Returns current date/time.

date_time.day_of_week(date)

Returns number of the day within a week for specified date. 1is Monday.
date_time.add(t1, t2) , date_time.sub(tl, t2)

Functions for adding and substracting date/time values. Note that these functions don't
modify their arguments.

tl
t2

date_time.now() —— Current date/time
date_time.add(tl, {day = 14}) —- Adds 2 weeks to the original date/time

date_time.compare(tl, t2)

Compares two date/time values and returns negative number if t7 precedes t2, positive
number if t2 precedes t7, or zero if t7and t2 are equal.

tl = date_time.now() —-- Current date/time
t2 = date_time.add(t1, {hour = 1}) —— Adds 1 hour to the original date/time
if date_time.compare(tl, t2) < @ then
util.dump("t1l is less than t2") —-- This message is always printed
end

Object library

Object table structure:

object = {
id = "{0123456789abcdef}", —-— System ID
class = "some.object.Class", —— Object class name
type = "device", —— Object type
name = "Foo Bar", —— Object name

location = "/My Objects", —— Location

parent = '"{0123456789%abcdef}", ——- Parent object ID

children = {"{0123456789abcdef}", ...}, —— Children object IDs
owners = {"{0123456789abcdef}" = true, ...}, —— Owner user IDs
settings = {param_1 = "value_1", ...} —— Object settings

Type-specific object tables contain all above values and may contain their own values.

User object:

user = {
type = "user", —— Fixed for user objects
first_name = "John",
last_name = '"Doe",
system_name = "jdoe",

groups = {"{0123456789abcdef}" = true, ...} —— User's group IDs

Device object:

device = {
type = "device",
serial_number = "0123456789", —— Serial number

sensors = {"{0123456789abcdef}" = true, ...}, —— Sensor IDs
actuators = {"{0123456789abcdef}" = true, ...} —— Actuator IDs

Service object:

service = {

type = "service"

Group object:

group = {

type = "group",

users = {"{0123456789abcdef}" = true, ...} —— Member user IDs

Script object:
script = {
type = "script"
Policy object:
policy = {

type = "policy",
users = {"{0123456789abcdef}" = true, ...} —— Member user IDs

Location object:

location

{

type = "location"

Sensor object:

sensor = {

type = "sensor",
serial_number = "0123456789"

Actuator object:

1]
-~

actuator

type = "actuator",
serial_number = "0123456789"

object.get(id)

Returns object identified by id argument. id can be system ID or object's location.

obj = object.get("{0123456789abcdef}") —— Get object by ID
user = object.get("/My Users/John Doe") -- Get object by location
sensor = object.get("Sensor 1") —-- Get object by location (relative to the calling ¢

object.get_children(parent_id)
Returns array of children objects.
object.query(query)

Returns list of objects matching the query (Hibernate's HQL syntax is used).

objs = object.query("from Device where serialNumber = '0123456789'")
for _, obj in ipairs(objs) do

util.dump(obj.name)
end

Event library

Event table structure:

event = {
id = "{0123456789%abcdef}", —— Event ID
class = "some.event.Class", —— Event class name

source = "{0123456789abcdef}", —— Source object ID
dest = "{0123456789%abcdef}", —— Destination object ID

time = {...}, —— Event generation timestamp (date/time table)
server_time = {...}, —— Server timestamp (date/time table)
field_1 = ..., — Event fields (depending on class name)
field N = ...

event.get()
Returns event which caused execution of the current script.
event.send(event) , event.send(event, dest)

Send event and return its ID.

e =4
class = "some.event.Class",
my_field = "My value"
¥
event.send(e) —— Sends signal event (no destination specified)
event.send(e, object.get("Some device")) —— Sends control event

event.get(class, from) , event.get(class, from, to)

Returns list of events with specified class name, registered between from and to
timestamps. If to is not specified, current date/time is used.

from = date_time.sub(date_time.now(), {hour = 3}) —— Getting events registered durir
events = event.get("some.event.category.x", from) —-— Using wildcard matching
for _, e in ipairs(events) do

util.dump(e)
end

Sensor library

sensor.get()

Returns sensor object which caused execution of the current script.
sensor.get_value()

Returns value of the sensor which caused execution of the current script.
sensor.get_value(sensor)

Returns sensor (or actuator) value. sensor can be object ID, location or object table.
sensor.set_value(actuator)

Sets actuator value. actuator can be object ID, location or object table.
sensor.get_values(sensor, from, to) , sensor.get_values(sensor, from)

Returns list of sensor values between from and to timestamps. If to is not specified, current
date/time is used.

Each sensor value is accompanied with timestamp (date/time table):

sens = object.get("Some sensor')
t = date_time.sub(date_time.now(), {min = 10}) —— Get values for last 10 minutes
vals = sensor.get_values(sens, t)
for _, s in ipairs(vals) do
util.dump(s.time)
util.dump(s.value)
end

Script library
script.first_run()
Returns true if current script is being executed for the first time since server's startup.
if script.first_run() then
—— Perform some script initialization
end
script.this()

Returns table which describes currently executed script (see "Object library" section for the
details).

script.context()

Returns persistent script's context table. The table is stored to database after script is
finished.

ctx = script.context()
if not ctx.initialized then

ctx.initialized = true —— Custom table key
end

script.shared_context(name)

Returns shared context table identified by name argument. Shared context data is
accessible from different scripts. The table is stored to database after script is finished.

ctx = script.shared_context("shared_data")

if not ctx.initialized then
ctx.initialized = true

end

script.run(script)

Executes script. script can be script ID, location or object table.

script.run("{0123456789abcdef}") -— Run script by ID
script.run("/My Scripts/Test script") —— Run script by location

script.schedule(script, time)

Schedules delayed script execution (script is executed exactly once). time can be delay in
milliseconds or date/time table.

script.schedule(script.this(), 5000) —-- Run current script in 5 seconds
script.schedule(script.this(), {hour=12, min=0}) —— Run current script at specified

Add a custom footer

© 2016 GitHub, Inc. Terms Privacy Security Status Help Contact GitHub

API

Training Shop Blog About

https://github.com/AIGSG/es/wiki/_new?wiki%5Bname%5D=_Footer
https://github.com/contact
https://developer.github.com/
https://training.github.com/
https://shop.github.com/
https://github.com/blog
https://github.com/about
https://github.com/site/terms
https://github.com/site/privacy
https://github.com/security
https://status.github.com/
https://help.github.com/

